Taylor-based optimized recursive extended exponential smoothed neural networks forecasting method
نویسندگان
چکیده
The development of a Time series Forecasting System is major concern for Artificial Intelligence researchers. Commonly, existing systems only assess temporal features and analyze the behavior data over time, thus, resulting in uncertain forecasting accuracy. Although many were proposed literature; they have not yet answered attending question. Hence, to overcome this problematic, we propose an innovative method called Taylor-based Optimized Recursive Extended Exponential Smoothed Neural Networks method, abbreviated as TOREESNN. Briefly explained, technique introduces three ideas solve issue: First, building framework univariate time based on theory. Second, designing Elman Classifier model uncertainty prediction order correct forecasted values. And finally hybrading two recurrent one obtain final results. Experimental results demonstrate that has high accuracy both training testing terms Mean Squared Error (MSE) outperforms state-of-the-art Recurrent models Mackey-Glass, Nonlinear Auto-Regressive Moving Average (NARMA), Lorenz, Henon map datasets.
منابع مشابه
AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملLocally Smoothed Neural Networks
Convolutional Neural Networks (CNN) and the locally connected layer are limited in capturing the importance and relations of different local receptive fields, which are often crucial for tasks such as face verification, visual question answering, and word sequence prediction. To tackle the issue, we propose a novel locally smoothed neural network (LSNN) in this paper. The main idea is to repres...
متن کاملA New Iterative Neural Based Method to Spot Price Forecasting
Electricity price predictions have become a major discussion on competitive market under deregulated power system. But, the exclusive characteristics of electricity price such as non-linearity, non-stationary and time-varying volatility structure present several challenges for this task. In this paper, a new forecast strategy based on the iterative neural network is proposed for Day-ahead price...
متن کاملInferences for Extended Generalized Exponential Distribution based on Order Statistics
‎Recently‎, ‎a new distribution‎, ‎named as extended generalized exponential distribution‎, ‎has been introduced by Kundu and Gupta (2011). ‎In this paper‎, ‎we consider the extended generalized exponential distribution with known shape parameters α and β. ‎At first‎, ‎the exact expressions for marginal and product moments of o...
متن کاملan extended fuzzy artificial neural networks model for time series forecasting
improving time series forecastingaccuracy is an important yet often difficult task.both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. in this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Intelligence
سال: 2022
ISSN: ['0924-669X', '1573-7497']
DOI: https://doi.org/10.1007/s10489-022-03890-w